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Abstract
In the remote regions of Northern Tanzania, women and children of

the Maasai Tribe walk nine hours a day to collect water for their families.
Over four years, the collaborative efforts with the Maasai communities
have led to the installation of four water harvesting units, enhancing the
local socio-economic conditions by facilitating educational opportunities
and economic pursuits for over 4,500 individuals within a 10-mile radius.
This project presents a novel approach to addressing this issue by inte-
grating satellite data and image classification to identify densely populated
areas marked by uniquely shaped Maasai homes lacking a water supply
and planning the best placement of rainwater harvesting units. The back-
bone of this project was developing an image classification model trained
on 10,000 hand-selected satellite image samples of Bomas. This model
generated a density heat map, enabling the strategic placement of water
harvesting units in the most critical locations to maximize impact. Our
findings underscore the potential of satellite technology in humanitarian
interventions, particularly in harder-to-reach areas where traditional sur-
veying and data collection techniques are impractical.

1 Introduction
1.1 Background and Context
According to the United Nations, one in four people cannot access clean water
((UnitedNations. Global Issues: Water. 2021. url: https://www.un.org/
en/global-issues/water)). One such community is the Maasai in the Mon-
duli District of Tanzania. They walk over nine hours daily to fetch water and
face climate change and land deforestation challenges ((Roshan Taneja, Yuvraj
Taneja, and Mbayani Tayai. “Evaluating the Impact of Water Harvesting for
4500+ Maasai in Communities in Monduli District, Arusha, Tanzania”. In:
National High School Journal of Science (NHSJS) (Oct. 2024). Accessed: 2024-
11-01. url: https://nhsjs.com/2024/evaluating-the-impact-of-water-
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harvesting-for-4500-maasai-in-communities-in-monduli-district-
arusha-tanzania/)). Floods and droughts are more frequent and severe, and
traditional water sources, such as rivers and springs, dry up. Annual rainfall in
Tanzania is equal to or higher than in the US, yet they face challenges in ac-
cessing water. The community has been deploying water harvesting units along
the main highway, which currently helps less than 4000 people, but only during
the rainy season. The impact of one water harvesting unit has been validated.
The challenge is that over 30,000-40,000 Maasai live across hundreds of square
miles without highways and infrastructure like electricity or water. A better
technique needs to be identified to assess the living locations, the density, and
pick the right water harvesting solution that balances cost, ease of deployment,
and sustainability. This paper takes the first step in identifying the living loca-
tions across hundreds of square miles using satellite images, machine learning,
and image classification models. If this approach has high precision, it can be
expanded to many regions for water resource planning and management oppor-
tunities. There is a need for sustainable water management solutions to support
communities like the Maasai and other areas of Africa.

Figure 1: Before and after the Water Harvesting Unit: Doubled the time spent
on economic, social, and agricultural activities

The first water harvesting unit of 100K liters directly impacted the community.
Specifically, kids have started coming to school more often, and there is higher
enrollment of students. Women have seen reduced walking time to fetch water
and use the extra time for social, agricultural, and economic activities and
reduced walking from nine to two hours a day (Fig 1).
Given the impact, multiple additional projects have been executed, including
deploying a 30+K liter water harvesting unit serving the Nanja village. Ad-
ditionally, a water filtration system in Engirgiri sanitizes water collected in
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man-made ponds in the area.

1.2 Problem Statement and Rationale
The primary concern was to support 30,000-50,000 Maasai, identifying the best
places to place rainwater harvesting units across 300-500 square miles. Ideally,
the best water harvesting solutions would be based on the population’s density
distribution and nearby available water resources. However, the government
does not provide accessible maps of the Maasai’s location. So, to design and
plan solutions at scale, satellite images and image classification helped to cre-
ate a map of Maasai dwellings and validate the maps with local community
involvement. The next step would be identifying the best locations for placing
the water harvesting solutions.

1.3 Scope and Limitations
The study will be limited to a selected area of about 250 sq. miles. In addition,
limited modifications will be made to the base computer vision algorithm. These
limitations enable a rapid iterative process to be used to finalize the correct
training data and algorithms. There are also other limitations in the data being
used.
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1.3.1 Unique Structure and Materials of Bomas

Figure 2: Examples of Bomas with variation in vegetation and structure.

Due to their polygamous nature, familial groups live together in large units
called "Bomas."
A Boma is a unique structure that is difficult to classify. There is no precise
size to a Boma, but it usually consists of multiple small huts and a section for
keeping goats and cows safe at night. A few characteristics define a Boma: an
outer barrier, traditionally made from rough bushes, trees, or other structures,
such as shelters inside. At the center will be a smaller circle, also created
with bushes, where cattle stay. These Bomas can house 10 to 50 people and
sometimes appear square or in other shapes. Another issue is the contrast of
the bushes with the environment, sometimes not showing up in typical color
imagery (Fig 2). As a result, hyperspectral or infrared imagery is utilized due
to its ability to differentiate between vegetation and soil.

1.3.2 Literature Review

This section reviews related works for deep learning methods for classifying
remote sensing satellite images. Classification of remote sensing images us-

4



ing machine learning is challenging because images are characterized by multi-
resolution, heterogeneous appearance, and multi-spectral channels. Convolu-
tional neural networks have a lot of limitations, including quality assurance of
inputs, false negatives, overfitting, and the complicated nature of hyperparam-
eters. Recent remote sensing and deep learning research has explored various
methods for analyzing and classifying satellite images. Three research papers
are included below to explain the range of methods but are not comprehensive.
((G. Richardson et al. “Dense neural network outperforms other machine learn-
ing models for scaling-up lichen cover maps in Eastern Canada”. In: PLoS ONE
18.11 (2023). Accessed: 25 Nov. 2024, e0292839. doi: 10.1371/journal.
pone.0292839. url: https://research.ebsco.com/linkprocessor/plink?
id=21a96e6b-e83c-3406-8d8b-f8226382537c)) focused on mapping lichen
to support caribou conservation efforts using machine learning models. They
trained a dense neural network to map lichen coverage, achieving an accu-
racy based on Sentinel-2 imagery and UAV data from 20 sites in Québec and
Labrador. The data was processed using Pix4D and Google Earth Engine. The
model used 10-meter resolution maps and minimized spatial autocorrelation
with a blocking strategy. The best-performing model, a dense neural network
with an R2 of 0.76, was trained with the Adam optimizer, and overfitting was
avoided with early stopping.
((G. Liu et al. “STransU2Net: Transformer based hybrid model for building
segmentation in detailed satellite imagery”. In: PLoS ONE 19.9 (2024). Ac-
cessed: 25 Nov. 2024, e0299732. doi: 10.1371/journal.pone.0299732.
url: https://research.ebsco.com/linkprocessor/plink?id=9dffa5b1-
6f63-3824-95ad-a20489f67fdf)) proposed STransU2Net for building extrac-
tion from satellite imagery using a hybrid approach that combines Convolu-
tional Neural Networks (CNN) and Transformer architectures. CNNs are ef-
fective for capturing local features but struggle with more significant buildings,
while Transformers are better at capturing global context but not small build-
ings. STransU2Net overcomes these limitations by integrating both models and
adding advanced features like Bottleneck Pooling Blocks (BPB) and Channel
And Spatial Attention Blocks (CSAB) to preserve edge information and focus
on essential features. The model was trained on two datasets, achieving im-
pressive results, with 91.04% IoU on the Aerial imagery dataset and 59.09%
IoU on the Satellite II dataset. Combining local feature extraction (CNN) and
global context modeling (Transformer) made building segmentation tasks more
efficient and accurate.
((Mark Chern Gary Pritt. “Satellite Image Classification with Deep Learning”.
In: arxiv (2020))) explored deep learning for satellite image classification, specif-
ically using Convolutional Neural Networks (CNNs) to detect objects in satellite
imagery. Their system was tested on the IARPA Functional Map of the World
(fMoW) dataset, which includes large-scale, multi-spectral satellite images. The
model successfully classified objects into 63 categories with 83% accuracy and
an F1 score of 0.797. The study highlighted challenges in preprocessing satellite
images, such as cloud cover, resizing that lost essential details, and the limita-
tions of labeled satellite datasets. By integrating metadata with image features,
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the system improved accuracy and managed false detections effectively.
The above techniques were not implemented explicitly. This project used data
augmentation of the training data, and the method is detailed in the following
sections.

1.3.3 Image Processing Pipeline

Satellite Image (03)

Satellite Image Meta Data (04)

Satellite Image (02)

Satellite Image Database (05)

Training Data (02A)

Validation Data (02B)

Input Processor (10)

Model (12)

Model Generator (11)

Output Processor (14)

Temporal Analyzer (54)

Clustering Process (16)

Dwelling Detector (01)
Parameters (21)

Weights (22)

Model Database (20)

Dwelling Location (41)

Clustering of Dwellings (45)

Dwelling Database (40)

Geographical Location (42)

Time Stamp (43)

Resource Instruction (44)

Water Consumption Estimation (51)

Water Unit Calculator (52)

Resource Provisioning Unit (50)

Figure 3: Image Processing Pipeline

The image processing pipeline illustrated in the diagram (Fig 3) is centered
around detecting and clustering dwellings from satellite image data to sup-
port resource provisioning. The process begins with a Satellite Image Database
(Fig 3:05) that stores raw satellite images (Fig 3:03) and associated metadata
(Fig 3:04). These images are divided into training data (Fig 3:02A) and vali-
dation data (Fig 3:02B), which are processed by an Input Processor (Fig 3:10)
to prepare the dataset for model training. The Model Generator (Fig 3:11)
creates a detection model (Fig 3:12) using parameters (Fig 3:21) and weights
(Fig 3:22) stored in the Model Database (Fig 3:20). This trained model is then
used to analyze the images and extract dwelling locations (Fig 3:41), including
associated geographical data (Fig 3:42) and timestamps (Fig 3:43).
Once dwelling locations are identified, the data is further refined through a
Clustering Process (Fig 3:16) to group dwellings into clusters (Fig 3:45), which
are stored in a Dwelling Database (Fig 3:40). The clustering process helps
identify patterns or group dwellings based on proximity or other relevant fac-
tors, which can be analyzed temporally using the Temporal Analyzer (Fig 3:54).
This clustered information is then utilized by the Resource Provisioning Unit
(Fig 3:50), which includes components like a Water Consumption Estimator
(Fig 3:51) and a Water Unit Calculator (Fig 3:52). These tools enable pre-
cise calculation and allocation of water resources to dwelling clusters, guided
by resource instructions (Fig 3:44) considering their specific geographical and
temporal requirements. The pipeline is designed for efficient resource allocation
by leveraging satellite imagery and advanced machine learning models.
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1.3.4 Techniques Considered

In evaluating three different methods for this project, the computer visions
considered were YOLOv7, OpenCV, and TensorFlow. YOLOv7, though highly
optimized for speed and accuracy with minimal background detection errors,
presented significant challenges. It proved difficult to integrate with Jupyter
notebooks((Adekanmi Adeyinka Adegun et al. “State-of-the-Art Deep Learning
Methods for Objects Detection in Remote Sensing Satellite Images”. In: Sensors
23.13 (2023). issn: 1424-8220. doi: 10.3390/s23135849. url: https://www.
mdpi.com/1424-8220/23/13/5849)). It performed inadequately with objects
of varying sizes and shapes—critical for this project—and suffered from limited
community support((Sandeep Kumar Deepthi S and Dr. Suresh L. “Detection
and Classification of Objects in Satellite Images using Custom CNN”. in: IJERT
10.3 (2021). issn: 2278-0181)), maintained by a small team. While boasting
extensive community support and customizable settings, OpenCV was deemed
overly complex, featuring a steep learning curve((Austen Groener, Gary Chern,
and Mark Pritt. “A Comparison of Deep Learning Object Detection Models
for Satellite Imagery”. In: 2019 IEEE Applied Imagery Pattern Recognition
Workshop (AIPR). 2019, pp. 1–10. doi: 10.1109/AIPR47015.2019.9174593)).
Conversely, TensorFlow appeared as the optimal choice, balancing accessibility
as an open-source tool and compatibility with Python and JavaScript, which
is crucial for integrating with Google Earth Engine (GEE). Despite its higher
resource consumption and slower performance, TensorFlow’s regular updates
and new features make it the most suitable framework. It provides the necessary
tools and support for successful project execution.

1.4 Objectives
This research project aims to optimize the placement of water harvesting so-
lutions based on population density and natural water sources. A population
density map would be generated, using satellite data to detect these uniquely
shaped Bomas across selected regions. This data will help identify critical loca-
tions for deploying the appropriate water solutions. The options for enhancing
water accessibility include large units for housing groups, such as installing com-
munal rainwater harvesting units to serve large groups of Bomas and creating
larger-scale rainwater collection systems, such as ponds or dams, to benefit en-
tire communities, especially in more densely populated areas.

2 Methods
2.1 Data
Two different sources were considered for the training data. One was the Coper-
nicus Institute website for the Copernicus Satellites and Google Earth Engine
(GEE). GEE was the better option because writing a script to generate the
training data from just a few points on a map was easier.
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2.1.1 Collection

2000 photos of Bomas and 500 photos of the environment (Omits a Boma) was
the first iteration of training data. The training accuracy was around 30%, far
below the required standards. The model needed help with a few problems.
First, The color of the Boma circle blended in too well with the environment.
Second, There wasn’t enough data to train the AI.

2.1.2 Augmentation

A key insight employed was the fact that these images could be superimposed,
meaning they could be rotated and flipped to create more training data for
the model. Using this new information, 6,000 more photos of Bomas and 1500
more images of the environment were generated. With this new model trained
at 10,000 images, the accuracy skyrocketed to 92.1%. Because these "Bomas"
are often disguised and varied, more training would not increase the accuracy
further. The model plateaus with the current constitution at a certain point due
to the extreme shape, color, and size variation. Toggling with filters, cropping,
grayscale, or increasing the contrast did not impact the accuracy. Perhaps more
fine-tuning is necessary, but it’s unlikely to change performance significantly.

2.2 Model Training

Figure 4: Schematic of the Model
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Figure 5: Accuracy over 15 epochs

Figure 6: Loss over 15 Epochs

The model architecture is a straightforward Convolutional Neural Network (CNN)
designed for image classification. The input images, resized to 100x100 pixels
with three color channels (RGB), undergo a series of transformations through
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the network. A rescaling layer normalizes the pixel values between 0 and 1
to standardize the input data. Three convolutional layers with ReLU activa-
tion extract features such as edges and patterns, particularly those indicative
of circular or closed shapes resembling the structure of a Boma. MaxPooling
layers follow each convolutional layer, reducing the dimensionality of the fea-
ture maps and focusing on the most prominent features. The resulting feature
maps are then flattened into a one-dimensional vector and passed through two
dense layers, with the final dense layer outputting logits for classification into
two categories: “boma” or “notboma.” (Fig 4)
The model was trained on 10,064 images, with 8,052 images used for training and
2,012 for validation, using a batch size of 32. The training was performed over 15
epochs (Fig 5), with the Adam optimizer and Sparse Categorical Crossentropy
as the loss function. The model achieved a steady improvement in accuracy and
loss during training, plateauing around epoch 12-14 (Fig 6).

2.3 Model Testing
The model’s training and validation performance indicate effective learning
but also highlight areas for refinement. After 15 epochs, the training accu-
racy reached 98.5%, while validation accuracy plateaued at 92.1%. The corre-
sponding validation loss also stabilized, reflecting a good fit to the data without
significant overfitting. A plot of training accuracy over epochs demonstrates
consistent improvement, while the validation accuracy remains slightly lower,
indicating room for further optimization. Training loss reduced significantly
during the first few epochs before leveling off, with a similar trend observed in
the validation loss. These results suggest that while the model generalizes well,
there may be opportunities to fine-tune hyperparameters or explore additional
regularization techniques to improve validation performance further.

2.4 Model Performance

Predicted: Boma Predicted: Not Boma Total
Actual: Boma 112 55 167

Actual: Not Boma 104 1741 1845
Total 216 1796 2012

Table 1: Confusion matrix for model predictions on the validation dataset.

The model demonstrated overall solid performance, achieving an accuracy of
92.1% on the validation dataset. However, the confusion matrix reveals class-
specific strengths and weaknesses: the model correctly classified 1,741 “not-
boma” images while misclassifying 104 as “boma.” For the “boma” class, it
correctly identified 112 images but failed to recognize 55, leading to an imbal-
ance in classification metrics. The precision for the “boma” class was 51.9%,
indicating a relatively high rate of false positives, while the recall was 67.1%,
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showing the model effectively captured most “boma” instances. The F1 score
of 58.5% reflects this trade-off between precision and recall. These results sug-
gest that while the model is a good baseline, further improvements could focus
on increasing precision, potentially through strategies like data augmentation,
addressing class imbalance, or refining the architecture.

2.5 Spatial Coordinate Extraction
Google Earth Engine (GEE) enables an image processing technique called "Im-
age Stacking." Typically, these stacks would allow users to perform time-series
analysis, detect trends, and monitor environmental changes using satellite im-
agery and other geospatial data. However, there is a lesser-known technique in
which the user "squashes" the highest-resolution sections together to generate
exceptionally high-resolution content to read. This can be useful, especially for
filling holes in scanning, removing lower-resolution mapping, or avoiding cloudy
content.
A specified sample of the Monduli district of just over 260 square miles was
chosen (Fig 7) and it was isolated for recent times in the last four weeks (2024-
02-01 to 2024-02-29). The images were manually isolated with no cloud coverage
over the selection area.

Figure 7: Designated Area for First Test, 260 square miles between Serengeti
and Arusha

All bands greater than 10-20 meters per pixel were filtered out of the image
stack. For Copernicus/S2_Harmonized, those included [’B2’, ’B3’, ’B4’, ’B5’,
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’B6’, ’B7’, ’B8’, ’B8A’, ’B11’, ’B12’] (Fig 8). Then, the images were layered
according to the variable importance GEE provided (Fig 9). An image stack
was created of all collected wavelengths of color light.

Figure 8: Band Resolutions Provided by Copernicus

Figure 9: Variable Band Priority

The image stack was seperated into slices run individually through the model
(Fig 4). The final image stack was 10980 pixels by 10980 pixels. To classify
some of these Bomas accurately, the samples overlapped by a 20-pixel overlap
in both the horizontal and vertical directions for edge cases where a Boma would
be too far into the border and missed by either selection.
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3 Results
It took over 4 hours to run the model discussed in section 2.2 over the selected
area of 260 square miles on GEE. Everywhere the confidence of the model was
above 80%, the coordinates of that point were recorded (Fig 10). Figure 10 dis-
plays a dot for each recorded sample plotted out by relative coordinate. In total,
the model classified 488 Bomas over the selected area. The relative coordinates
were transposed on top of the image stack of the designated area generated in
section 2.5 (Fig 11). Figure 11 displays all the classified Bomas relative to Nanja
Dam (natural reservoir).

Figure 10: Output with relative coordinates
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Figure 11: Output Overlayed Over Image Stack

4 Discussion
4.1 Key Findings
It is evident that large populations seem to live in dense communities of several
dozen Bomas (A, B, F, J, K). They also live in lines along the edges of major
geological formations such as dried riverbeds or reservoirs (C, E, G). In addition,
it also looks like many communities reside parallel to the major highway that
runs through the area (H, I). This information can be used to isolate large
communities and identify the best locations for rainwater harvesting solutions
(Fig 12).
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Figure 12: Large High-Density Community Collections of Bomas Highlighted
with Major Highway

Larger groups, especially those further away from the Nanja Dam, such as A, B,
and F, are this project’s starting point, and identifying locations within these
more prominent groups to place these water harvesting solutions is the next
step.

4.2 Limitations of Outputs
As you can see in the zoomed-in photos, the images streamed to the web editor
are very low quality from the perspective of the GEE editor. However, there are
noticeable patterns where the model "identified" Bomas (Fig 13). A quick look
at the coordinates in Google Maps (with higher resolution but dated images)
shows that at least a couple of these points seem to be housing units. However,
many Bomas seem not identified (Fig 14), or only large, easily identifiable with
thick or dark boundaries are identified.
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Figure 13: Zoomed In Portion on GEE

Figure 14: Zoomed In Portion on Google Maps Displaying False Negatives

In addition, the training data may have caused some of these inaccuracies. The
dataset was very unbalanced, with 75% of the data being photos of Bomas and
only 25% of the data being photos of the environment. The model may have
been more accurate with a more balanced training set.
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4.3 Implications and Significance
Maps like these can be used in numerous contexts, especially in other human-
itarian efforts. Now that the population locations are better understood, the
data can be used to structure other initiatives, like drone-based medical delivery,
better road systems, or the locations of medical facilities. Other organizations,
or even the Tanzanian Government, could use this data to understand better
where their Indigenous populations are located. For instance, temporal satellite
data analysis can identify migration patterns in other nomadic tribes, especially
to warn said tribes of dangerous events like flooding or landslides.

4.4 Ground Truth Validation
The outputs’ results are being validated with the local Maasai community (a
formal group of Maasai members from across the region). To simplify validation,
geo-tagged pictures taken by volunteers on the ground will be cross-referenced
with the outputs from the model, providing an estimate of the physical accuracy
of the model.

4.5 Community Involvement
With the validated data, the next step is to segment the map into high-density,
medium-density, and low-density clusters. Identifying the best possible water
access solutions is based on the size and area of the clusters.
Three types of deployment solutions are being evaluated with the community.
The first is a low-cost solution of 5000-liter tanks with rainwater harvesting at
a Boma. This applies to distant Bomas, which are not close to any significant
water access location. The second is a sizeable 100,000-liter water harvesting
solution deployed for a set of Bomas together that will be helpful for large-
density/medium-density regions. The third is a man-made pond/small lake
where rainwater collects, and a solar-powered pump and filtration unit provides
clean water access.
One of the core principles of ensuring long-term sustained impact and ownership
is to empower and enable the local Maasai community to pick these solutions and
invest their time in the planning, deployment, and ongoing maintenance. With
over 480 Bomas and 50000 Maasai, establishing a more structured Water Council
that takes accountability for equitable water use and ongoing maintenance will
be crucial. This work is done with Maji Wells [Mbayani Tayai, local Maasai
leader] and other local community leads.

5 Conclusion
This study has demonstrated the potential of integrating advanced satellite
imagery analysis with traditional water management practices to significantly
enhance water accessibility for the Maasai communities in Northern Tanzania.
By employing TensorFlow in conjunction with Google Earth Engine, a model
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was developed that identifies populations. These maps can optimize water solu-
tion placement, tailoring solutions to the region’s unique geographical and social
structure.
A mix of individual and communal rainwater harvesting units is being built in
or near the locations.
Future efforts should focus on refining the models’ predictive accuracy by in
corporating more diverse data sets and real-time environmental monitoring.
Additionally, exploring partnerships with local governments and international
organizations will be crucial in scaling these solutions to other similarly affected
communities globally. By continuously blending technology with traditional
knowledge, more resilient communities can be better equipped to manage their
natural resources sustainably.
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